
The C++ Standards Committee:
Progress & Plans

Walter E. Brown Marc F. Paterno
Computing Division

� Fermi National Accelerator Laboratory

C++ Standards Committee Progress & Plans 2

�Motivation for this Talk

• C++ is HEP’s programming lingua franca
� But the scientific community has been under-

represented in the C++ standardization effort
� Fermilab joined the standards committee last year

• FNAL now has full voting privileges
• We are FNAL’s designated representatives

• Our goal: keep you informed
� Share our experiences and insights
� Communicate new excitement about C++’s future

C++ Standards Committee Progress & Plans 3

�Overview

• Background information
� Formal committee structure
� Formal and informal working arrangements
� C++ standardization timeline

• Recent committee work
• Directions for evolution of C++

� Thoughts from Bjarne Stroustrup
� Committee reaction and public response

C++ Standards Committee Progress & Plans 4

�ISO JTC1-SC22/WG21

• ISO: Int’l Standards Organization
� JTC1: Joint Technical Committee for Information

Technology
� SC22: Subcommittee for Programming

Languages, their Environments, and System
Software Interfaces

� WG21: Working Group for C++

• ISO membership is composed of national
standards bodies

C++ Standards Committee Progress & Plans 5

�ANSI NCITS/J16

• ANSI: American National Standards Institute
� NCITS: Nat’l Committee for Information

Technology Standards (formerly known as
Accredited Standards Committee X3)

� J16: Technical Committee for Programming
Language C++

• Fermilab is a voting member of J16

C++ Standards Committee Progress & Plans 6

�Working Arrangements

• All meetings of WG21 and J16 are co-located
• All formal votes are taken twice:

� J16 first, with only its members voting
� WG21 second, with only national bodies voting

• Informal consensus is reached before formal
motions are brought to a vote
� Hence motions pass without opposition
� Strong commitment to cooperation on part of all

members

C++ Standards Committee Progress & Plans 7

�Internal Organization

• All representatives work together for the
common goal
� J16 and WG21
� Voting and non-voting
� Members and observers

• Currently 3 subcommittees (“working groups”)
� Core language (~25)
� Library (~30)
� Performance (~10)

C++ Standards Committee Progress & Plans 8

�C++ Standardization Timeline

• Standardization effort dates from ~1990
• Draft C++ Standards were issued for public

comment in 1995 and 1996
• Final C++ Standard approved in 1997
• Ratified by ISO and formally issued in 1998

� Electronic .pdf copies of Standard available ($18)

• “1997-2000 was a deliberate period of calm
to enhance stability”
� Now is the time to start discussing and planning

C++ Standards Committee Progress & Plans 9

�ISO Requirements

• Must revisit Standard every 5 years and ratify,
amend, or withdraw it

• May process Defect Reports at any time:
� Apparent error, inconsistency, ambiguity, or

omission in the published final Standard
� Failure of wording to meet Committee’s intent
� dkuug.dk/jtc1/sc22/wg21

• May issue up to 2 Technical Corrigenda:
� Corrections to accepted Defect Reports
� research.att.com/~austern/csc/faq.html#B13

C++ Standards Committee Progress & Plans 10

�Post-Standard Committee Work

• Technical Corrigendum
� Approved and sent to Project Editor (Oct. 2000)
� Final proofing now in progress (May 2001)
� Form of final document yet to be resolved with ISO

• Ongoing efforts
� Additional Defect Reports were processed,

pending a possible TC2
� Request for a new work item, a Technical Report

on C++ library extensions, has been sent to SC22

C++ Standards Committee Progress & Plans 11

�Sample Defect Report

• Library Issue 69: “Must elements of a vector
be contiguous?”
� Affects clause 23.2.4
� Status: DR (accepted defect w/ agreed resolution)
� Resolution: “The elements of a vector are stored

contiguously….”

C++ Standards Committee Progress & Plans 12

�Thoughts from Bjarne Stroustrup

• Bjarne spoke on Directions for C++0x:
� Started discussion about future of Standard C++
� Gave some concrete examples to seed technical

discussions

• Overview:
� Focus on support for programming styles and for

application areas, not on language technicalities
� Minor changes to improve consistency and so

make C++ easier to teach and learn
� No major new language features are needed

C++ Standards Committee Progress & Plans 13

�Suggested Desiderata

• General principles:
� Minimize incompatibilities with C++98 and C99
� Keep to the zero-overhead principle
� Maintain or increase type safety

• Core language:
� Avoid major language extensions
� Make rules more general and uniform

• Library:
� Improve support for generic programming
� Support distributed systems programming

C++ Standards Committee Progress & Plans 14

�For Programming Convenience

• Solve trivial problems:
� Convert native types to/from std::string
� Allow vector<list<int>> syntax (note no space)
� Add some containers with default range-checking

• Address common pitfalls:
� Generate no copy operators (assignment, c’tor) for

a class with a user-written d’tor
� Make default destructor virtual for classes with

other virtual functions
� Prohibit hiding virtual functions in a derived class

C++ Standards Committee Progress & Plans 15

�Generic Programming Support

• typedef templates:
template< class T >
typedef std::map< std::string, T > Dictionary;
Dictionary<double> d;
Dictionary<PhoneNumber> phonebook;

• typeof() compile-time operator:
template< class T >
void foo(T t) {

typeof(f(t)) y = f(t);
… ;

}

C++ Standards Committee Progress & Plans 16

�Core Language Ideas

• Improve consistency and portability:
� Unify lookup between functions & functors
� Minimize “implementation-defined” & “undefined”

• Provide guarantees for general concurrency
� Atomicity of selected operations
� Signal-handling requirements

• Remove language impediments to use of
garbage-collection for memory management

C++ Standards Committee Progress & Plans 17

�Standard Library Ideas

• Add a few general utilities:
� hash_map< >, slist< >, …
� Pattern-matching (e.g., regular expressions)
� “Properties” (designated getter/setter functions)

• Provide bindings to other environments such
as CORBA, SQL, …

• Support parallel & distributed computing:
� Interface to platform’s threads & locks
� Remote invocation (sync/async) interface
� XTI (eXtended Type Information)

C++ Standards Committee Progress & Plans 18

�Remote Invocation

• Synchronous call equivalent to z = m.foo(x,y);

Handle< typeof(z) > h =
client(m).send(message(&M::foo, x, y));

z = h.get();

• Asynchronous call equivalent to the above:
Handle< typeof(z) > h =

async(m).send(message(&M::foo, x, y));
// …
if (h.ready()) z = h.get();

C++ Standards Committee Progress & Plans 19

�XTI (Extended Type Information)

• A set of classes/objects representing most
things declared in the C++ type system:
� Include: classes, enumerations, typedefs,

templates, namespaces, functions, …
� Exclude: code, local types

• Useful for run-time resolution, program
analysis, program transformation, …

Program p(“my_types”);
if (p.global_scope[“my_vec”].is_class()) // …
for (scope::iterator i = p.begin(); i != p.end(); ++i)

i->xti_name();

C++ Standards Committee Progress & Plans 20

�Unlikely Candidates For Now

• Standard GUI – politically/technically too hard
• C++ ABI – a platform-specific issue
• Dynamic linking/loading – insufficient interest
• Persistence

� No agreement on model
� BUT: XTI will help by providing standard library

support for “data dictionaries”

C++ Standards Committee Progress & Plans 21

�Reactions

• Stroustrup’s remarks generally well-received
• Significant discussions under way

� On Committee’s private email reflector
� In public newsgroups

• Wide range of topics & informal proposals
� Technical issues
� Procedural issues
� Compatibility issues

C++ Standards Committee Progress & Plans 22

�In Sum …

• The Standards Committee does not need to
be a distant, impersonal body!
� You have local representation
� We are happy to answer questions, file Defect

Reports, take suggestions for C++’s evolution, …
� See us, or email to cxx-users@fnal.gov

The C++ Standards Committee:
Progress & Plans

Walter E. Brown Marc F. Paterno
Computing Division

� Fermi National Accelerator Laboratory
www-cdserver.fnal.gov/cd_public/cpd/aps/J16.htm

